From: Paul Mackerras On machines with Altivec (i.e. G4 and G5 processors), the altivec floating-point instructions can operate in two modes: one where denormalized inputs or outputs are truncated to zero, and one where they aren't. In the latter mode the processor can take an exception when it encounters denormalized floating-point inputs or outputs rather than dealing with them in hardware. This patch adds code to deal properly with the exception, by emulating the instruction that caused the exception. Previously the kernel just switched the altivec unit into the truncate-to-zero mode, which works but is a bit gross. Fortunately there are only a limited set of altivec instructions which can generate the assist exception, so we don't have to emulate the whole altivec instruction set. This patch also makes sure that we always have a handler for the altivec unavailable exception. Without this, if you run a kernel that is not configured for altivec support on a machine with altivec, it works fine until a user process tries to execute an altivec instruction. At that point the kernel thinks it has taken an unknown exception and panics. With this patch it sends a SIGILL to the process instead. --- 25-akpm/arch/ppc/kernel/Makefile | 1 25-akpm/arch/ppc/kernel/head.S | 13 - 25-akpm/arch/ppc/kernel/traps.c | 41 ++++ 25-akpm/arch/ppc/kernel/vecemu.c | 346 +++++++++++++++++++++++++++++++++++++++ 25-akpm/arch/ppc/kernel/vector.S | 217 ++++++++++++++++++++++++ 5 files changed, 611 insertions(+), 7 deletions(-) diff -puN arch/ppc/kernel/head.S~ppc32-handle-altivec-assist-exception-properly arch/ppc/kernel/head.S --- 25/arch/ppc/kernel/head.S~ppc32-handle-altivec-assist-exception-properly 2004-05-15 23:41:31.116380176 -0700 +++ 25-akpm/arch/ppc/kernel/head.S 2004-05-15 23:41:31.123379112 -0700 @@ -491,14 +491,16 @@ SystemCall: /* * The Altivec unavailable trap is at 0x0f20. Foo. * We effectively remap it to 0x3000. + * We include an altivec unavailable exception vector even if + * not configured for Altivec, so that you can't panic a + * non-altivec kernel running on a machine with altivec just + * by executing an altivec instruction. */ . = 0xf00 b Trap_0f . = 0xf20 -#ifdef CONFIG_ALTIVEC b AltiVecUnavailable -#endif Trap_0f: EXCEPTION_PROLOG @@ -705,6 +707,7 @@ DataStoreTLBMiss: #ifndef CONFIG_ALTIVEC #define AltivecAssistException UnknownException #endif + EXCEPTION(0x1300, Trap_13, InstructionBreakpoint, EXC_XFER_EE) EXCEPTION(0x1400, SMI, SMIException, EXC_XFER_EE) EXCEPTION(0x1500, Trap_15, UnknownException, EXC_XFER_EE) @@ -746,12 +749,12 @@ DataStoreTLBMiss: . = 0x3000 -#ifdef CONFIG_ALTIVEC AltiVecUnavailable: EXCEPTION_PROLOG +#ifdef CONFIG_ALTIVEC bne load_up_altivec /* if from user, just load it up */ - EXC_XFER_EE_LITE(0xf20, KernelAltiVec) #endif /* CONFIG_ALTIVEC */ + EXC_XFER_EE_LITE(0xf20, AltivecUnavailException) #ifdef CONFIG_PPC64BRIDGE DataAccess: @@ -1633,7 +1636,7 @@ initial_mm_power4: blr #endif /* CONFIG_POWER4 */ - + #ifdef CONFIG_8260 /* Jump into the system reset for the rom. * We first disable the MMU, and then jump to the ROM reset address. diff -puN arch/ppc/kernel/Makefile~ppc32-handle-altivec-assist-exception-properly arch/ppc/kernel/Makefile --- 25/arch/ppc/kernel/Makefile~ppc32-handle-altivec-assist-exception-properly 2004-05-15 23:41:31.117380024 -0700 +++ 25-akpm/arch/ppc/kernel/Makefile 2004-05-15 23:41:31.122379264 -0700 @@ -29,6 +29,7 @@ obj-$(CONFIG_PCI) += pci-dma.o obj-$(CONFIG_KGDB) += ppc-stub.o obj-$(CONFIG_SMP) += smp.o smp-tbsync.o obj-$(CONFIG_TAU) += temp.o +obj-$(CONFIG_ALTIVEC) += vecemu.o vector.o ifdef CONFIG_MATH_EMULATION obj-$(CONFIG_8xx) += softemu8xx.o diff -puN arch/ppc/kernel/traps.c~ppc32-handle-altivec-assist-exception-properly arch/ppc/kernel/traps.c --- 25/arch/ppc/kernel/traps.c~ppc32-handle-altivec-assist-exception-properly 2004-05-15 23:41:31.118379872 -0700 +++ 25-akpm/arch/ppc/kernel/traps.c 2004-05-15 23:41:31.127378504 -0700 @@ -631,17 +631,54 @@ TAUException(struct pt_regs *regs) } #endif /* CONFIG_INT_TAU */ +void AltivecUnavailException(struct pt_regs *regs) +{ + static int kernel_altivec_count; + +#ifndef CONFIG_ALTIVEC + if (user_mode(regs)) { + /* A user program has executed an altivec instruction, + but this kernel doesn't support altivec. */ + _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); + return; + } +#endif + /* The kernel has executed an altivec instruction without + first enabling altivec. Whinge but let it do it. */ + if (++kernel_altivec_count < 10) + printk(KERN_ERR "AltiVec used in kernel (task=%p, pc=%x)\n", + current, regs->nip); + regs->msr |= MSR_VEC; +} + #ifdef CONFIG_ALTIVEC void AltivecAssistException(struct pt_regs *regs) { + int err; + preempt_disable(); if (regs->msr & MSR_VEC) giveup_altivec(current); preempt_enable(); - /* XXX quick hack for now: set the non-Java bit in the VSCR */ - current->thread.vscr.u[3] |= 0x10000; + err = emulate_altivec(regs); + if (err == 0) { + regs->nip += 4; /* skip emulated instruction */ + emulate_single_step(regs); + return; + } + + if (err == -EFAULT) { + /* got an error reading the instruction */ + _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); + } else { + /* didn't recognize the instruction */ + /* XXX quick hack for now: set the non-Java bit in the VSCR */ + printk(KERN_ERR "unrecognized altivec instruction " + "in %s at %lx\n", current->comm, regs->nip); + current->thread.vscr.u[3] |= 0x10000; + } } #endif /* CONFIG_ALTIVEC */ diff -puN /dev/null arch/ppc/kernel/vecemu.c --- /dev/null 2003-09-15 06:40:47.000000000 -0700 +++ 25-akpm/arch/ppc/kernel/vecemu.c 2004-05-15 23:41:31.129378200 -0700 @@ -0,0 +1,346 @@ +/* + * Routines to emulate some Altivec/VMX instructions, specifically + * those that can trap when given denormalized operands in Java mode. + */ +#include +#include +#include +#include +#include +#include + +/* Functions in vector.S */ +extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b); +extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b); +extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); +extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); +extern void vrefp(vector128 *dst, vector128 *src); +extern void vrsqrtefp(vector128 *dst, vector128 *src); +extern void vexptep(vector128 *dst, vector128 *src); + +static unsigned int exp2s[8] = { + 0x800000, + 0x8b95c2, + 0x9837f0, + 0xa5fed7, + 0xb504f3, + 0xc5672a, + 0xd744fd, + 0xeac0c7 +}; + +/* + * Computes an estimate of 2^x. The `s' argument is the 32-bit + * single-precision floating-point representation of x. + */ +static unsigned int eexp2(unsigned int s) +{ + int exp, pwr; + unsigned int mant, frac; + + /* extract exponent field from input */ + exp = ((s >> 23) & 0xff) - 127; + if (exp > 7) { + /* check for NaN input */ + if (exp == 128 && (s & 0x7fffff) != 0) + return s | 0x400000; /* return QNaN */ + /* 2^-big = 0, 2^+big = +Inf */ + return (s & 0x80000000)? 0: 0x7f800000; /* 0 or +Inf */ + } + if (exp < -23) + return 0x3f800000; /* 1.0 */ + + /* convert to fixed point integer in 9.23 representation */ + pwr = (s & 0x7fffff) | 0x800000; + if (exp > 0) + pwr <<= exp; + else + pwr >>= -exp; + if (s & 0x80000000) + pwr = -pwr; + + /* extract integer part, which becomes exponent part of result */ + exp = (pwr >> 23) + 126; + if (exp >= 254) + return 0x7f800000; + if (exp < -23) + return 0; + + /* table lookup on top 3 bits of fraction to get mantissa */ + mant = exp2s[(pwr >> 20) & 7]; + + /* linear interpolation using remaining 20 bits of fraction */ + asm("mulhwu %0,%1,%2" : "=r" (frac) + : "r" (pwr << 12), "r" (0x172b83ff)); + asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant)); + mant += frac; + + if (exp >= 0) + return mant + (exp << 23); + + /* denormalized result */ + exp = -exp; + mant += 1 << (exp - 1); + return mant >> exp; +} + +/* + * Computes an estimate of log_2(x). The `s' argument is the 32-bit + * single-precision floating-point representation of x. + */ +static unsigned int elog2(unsigned int s) +{ + int exp, mant, lz, frac; + + exp = s & 0x7f800000; + mant = s & 0x7fffff; + if (exp == 0x7f800000) { /* Inf or NaN */ + if (mant != 0) + s |= 0x400000; /* turn NaN into QNaN */ + return s; + } + if ((exp | mant) == 0) /* +0 or -0 */ + return 0xff800000; /* return -Inf */ + + if (exp == 0) { + /* denormalized */ + asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant)); + mant <<= lz - 8; + exp = (-118 - lz) << 23; + } else { + mant |= 0x800000; + exp -= 127 << 23; + } + + if (mant >= 0xb504f3) { /* 2^0.5 * 2^23 */ + exp |= 0x400000; /* 0.5 * 2^23 */ + asm("mulhwu %0,%1,%2" : "=r" (mant) + : "r" (mant), "r" (0xb504f334)); /* 2^-0.5 * 2^32 */ + } + if (mant >= 0x9837f0) { /* 2^0.25 * 2^23 */ + exp |= 0x200000; /* 0.25 * 2^23 */ + asm("mulhwu %0,%1,%2" : "=r" (mant) + : "r" (mant), "r" (0xd744fccb)); /* 2^-0.25 * 2^32 */ + } + if (mant >= 0x8b95c2) { /* 2^0.125 * 2^23 */ + exp |= 0x100000; /* 0.125 * 2^23 */ + asm("mulhwu %0,%1,%2" : "=r" (mant) + : "r" (mant), "r" (0xeac0c6e8)); /* 2^-0.125 * 2^32 */ + } + if (mant > 0x800000) { /* 1.0 * 2^23 */ + /* calculate (mant - 1) * 1.381097463 */ + /* 1.381097463 == 0.125 / (2^0.125 - 1) */ + asm("mulhwu %0,%1,%2" : "=r" (frac) + : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a)); + exp += frac; + } + s = exp & 0x80000000; + if (exp != 0) { + if (s) + exp = -exp; + asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp)); + lz = 8 - lz; + if (lz > 0) + exp >>= lz; + else if (lz < 0) + exp <<= -lz; + s += ((lz + 126) << 23) + exp; + } + return s; +} + +#define VSCR_SAT 1 + +static int ctsxs(unsigned int x, int scale, unsigned int *vscrp) +{ + int exp, mant; + + exp = (x >> 23) & 0xff; + mant = x & 0x7fffff; + if (exp == 255 && mant != 0) + return 0; /* NaN -> 0 */ + exp = exp - 127 + scale; + if (exp < 0) + return 0; /* round towards zero */ + if (exp >= 31) { + /* saturate, unless the result would be -2^31 */ + if (x + (scale << 23) != 0xcf000000) + *vscrp |= VSCR_SAT; + return (x & 0x80000000)? 0x80000000: 0x7fffffff; + } + mant |= 0x800000; + mant = (mant << 7) >> (30 - exp); + return (x & 0x80000000)? -mant: mant; +} + +static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp) +{ + int exp; + unsigned int mant; + + exp = (x >> 23) & 0xff; + mant = x & 0x7fffff; + if (exp == 255 && mant != 0) + return 0; /* NaN -> 0 */ + exp = exp - 127 + scale; + if (exp < 0) + return 0; /* round towards zero */ + if (x & 0x80000000) { + /* negative => saturate to 0 */ + *vscrp |= VSCR_SAT; + return 0; + } + if (exp >= 32) { + /* saturate */ + *vscrp |= VSCR_SAT; + return 0xffffffff; + } + mant |= 0x800000; + mant = (mant << 8) >> (31 - exp); + return mant; +} + +/* Round to floating integer, towards 0 */ +static unsigned int rfiz(unsigned int x) +{ + int exp; + + exp = ((x >> 23) & 0xff) - 127; + if (exp == 128 && (x & 0x7fffff) != 0) + return x | 0x400000; /* NaN -> make it a QNaN */ + if (exp >= 23) + return x; /* it's an integer already (or Inf) */ + if (exp < 0) + return x & 0x80000000; /* |x| < 1.0 rounds to 0 */ + return x & ~(0x7fffff >> exp); +} + +/* Round to floating integer, towards +/- Inf */ +static unsigned int rfii(unsigned int x) +{ + int exp, mask; + + exp = ((x >> 23) & 0xff) - 127; + if (exp == 128 && (x & 0x7fffff) != 0) + return x | 0x400000; /* NaN -> make it a QNaN */ + if (exp >= 23) + return x; /* it's an integer already (or Inf) */ + if ((x & 0x7fffffff) == 0) + return x; /* +/-0 -> +/-0 */ + if (exp < 0) + /* 0 < |x| < 1.0 rounds to +/- 1.0 */ + return (x & 0x80000000) | 0x3f800000; + mask = 0x7fffff >> exp; + /* mantissa overflows into exponent - that's OK, + it can't overflow into the sign bit */ + return (x + mask) & ~mask; +} + +/* Round to floating integer, to nearest */ +static unsigned int rfin(unsigned int x) +{ + int exp, half; + + exp = ((x >> 23) & 0xff) - 127; + if (exp == 128 && (x & 0x7fffff) != 0) + return x | 0x400000; /* NaN -> make it a QNaN */ + if (exp >= 23) + return x; /* it's an integer already (or Inf) */ + if (exp < -1) + return x & 0x80000000; /* |x| < 0.5 -> +/-0 */ + if (exp == -1) + /* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */ + return (x & 0x80000000) | 0x3f800000; + half = 0x400000 >> exp; + /* add 0.5 to the magnitude and chop off the fraction bits */ + return (x + half) & ~(0x7fffff >> exp); +} + +int +emulate_altivec(struct pt_regs *regs) +{ + unsigned int instr, i; + unsigned int va, vb, vc, vd; + vector128 *vrs; + + if (get_user(instr, (unsigned int *) regs->nip)) + return -EFAULT; + if ((instr >> 26) != 4) + return -EINVAL; /* not an altivec instruction */ + vd = (instr >> 21) & 0x1f; + va = (instr >> 16) & 0x1f; + vb = (instr >> 11) & 0x1f; + vc = (instr >> 6) & 0x1f; + + vrs = current->thread.vr; + switch (instr & 0x3f) { + case 10: + switch (vc) { + case 0: /* vaddfp */ + vaddfp(&vrs[vd], &vrs[va], &vrs[vb]); + break; + case 1: /* vsubfp */ + vsubfp(&vrs[vd], &vrs[va], &vrs[vb]); + break; + case 4: /* vrefp */ + vrefp(&vrs[vd], &vrs[vb]); + break; + case 5: /* vrsqrtefp */ + vrsqrtefp(&vrs[vd], &vrs[vb]); + break; + case 6: /* vexptefp */ + for (i = 0; i < 4; ++i) + vrs[vd].u[i] = eexp2(vrs[vb].u[i]); + break; + case 7: /* vlogefp */ + for (i = 0; i < 4; ++i) + vrs[vd].u[i] = elog2(vrs[vb].u[i]); + break; + case 8: /* vrfin */ + for (i = 0; i < 4; ++i) + vrs[vd].u[i] = rfin(vrs[vb].u[i]); + break; + case 9: /* vrfiz */ + for (i = 0; i < 4; ++i) + vrs[vd].u[i] = rfiz(vrs[vb].u[i]); + break; + case 10: /* vrfip */ + for (i = 0; i < 4; ++i) { + u32 x = vrs[vb].u[i]; + x = (x & 0x80000000)? rfiz(x): rfii(x); + vrs[vd].u[i] = x; + } + break; + case 11: /* vrfim */ + for (i = 0; i < 4; ++i) { + u32 x = vrs[vb].u[i]; + x = (x & 0x80000000)? rfii(x): rfiz(x); + vrs[vd].u[i] = x; + } + break; + case 14: /* vctuxs */ + for (i = 0; i < 4; ++i) + vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va, + ¤t->thread.vscr.u[3]); + break; + case 15: /* vctsxs */ + for (i = 0; i < 4; ++i) + vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va, + ¤t->thread.vscr.u[3]); + break; + default: + return -EINVAL; + } + break; + case 46: /* vmaddfp */ + vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); + break; + case 47: /* vnmsubfp */ + vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); + break; + default: + return -EINVAL; + } + + return 0; +} diff -puN /dev/null arch/ppc/kernel/vector.S --- /dev/null 2003-09-15 06:40:47.000000000 -0700 +++ 25-akpm/arch/ppc/kernel/vector.S 2004-05-15 23:41:31.130378048 -0700 @@ -0,0 +1,217 @@ +#include +#include + +/* + * The routines below are in assembler so we can closely control the + * usage of floating-point registers. These routines must be called + * with preempt disabled. + */ + .data +fpzero: + .long 0 +fpone: + .long 0x3f800000 /* 1.0 in single-precision FP */ +fphalf: + .long 0x3f000000 /* 0.5 in single-precision FP */ + + .text +/* + * Internal routine to enable floating point and set FPSCR to 0. + * Don't call it from C; it doesn't use the normal calling convention. + */ +fpenable: + mfmsr r10 + ori r11,r10,MSR_FP + mtmsr r11 + isync + stfd fr0,24(r1) + stfd fr1,16(r1) + stfd fr31,8(r1) + lis r11,fpzero@ha + mffs fr31 + lfs fr1,fpzero@l(r11) + mtfsf 0xff,fr1 + blr + +fpdisable: + mtfsf 0xff,fr31 + lfd fr31,8(r1) + lfd fr1,16(r1) + lfd fr0,24(r1) + mtmsr r10 + isync + blr + +/* + * Vector add, floating point. + */ + .globl vaddfp +vaddfp: + stwu r1,-32(r1) + mflr r0 + stw r0,36(r1) + bl fpenable + li r0,4 + mtctr r0 + li r6,0 +1: lfsx fr0,r4,r6 + lfsx fr1,r5,r6 + fadds fr0,fr0,fr1 + stfsx fr0,r3,r6 + addi r6,r6,4 + bdnz 1b + bl fpdisable + lwz r0,36(r1) + mtlr r0 + addi r1,r1,32 + blr + +/* + * Vector subtract, floating point. + */ + .globl vsubfp +vsubfp: + stwu r1,-32(r1) + mflr r0 + stw r0,36(r1) + bl fpenable + li r0,4 + mtctr r0 + li r6,0 +1: lfsx fr0,r4,r6 + lfsx fr1,r5,r6 + fsubs fr0,fr0,fr1 + stfsx fr0,r3,r6 + addi r6,r6,4 + bdnz 1b + bl fpdisable + lwz r0,36(r1) + mtlr r0 + addi r1,r1,32 + blr + +/* + * Vector multiply and add, floating point. + */ + .globl vmaddfp +vmaddfp: + stwu r1,-48(r1) + mflr r0 + stw r0,52(r1) + bl fpenable + stfd fr2,32(r1) + li r0,4 + mtctr r0 + li r7,0 +1: lfsx fr0,r4,r7 + lfsx fr1,r5,r7 + lfsx fr2,r6,r7 + fmadds fr0,fr0,fr1,fr2 + stfsx fr0,r3,r7 + addi r7,r7,4 + bdnz 1b + lfd fr2,32(r1) + bl fpdisable + lwz r0,52(r1) + mtlr r0 + addi r1,r1,48 + blr + +/* + * Vector negative multiply and subtract, floating point. + */ + .globl vnmsubfp +vnmsubfp: + stwu r1,-48(r1) + mflr r0 + stw r0,52(r1) + bl fpenable + stfd fr2,32(r1) + li r0,4 + mtctr r0 + li r7,0 +1: lfsx fr0,r4,r7 + lfsx fr1,r5,r7 + lfsx fr2,r6,r7 + fnmsubs fr0,fr0,fr1,fr2 + stfsx fr0,r3,r7 + addi r7,r7,4 + bdnz 1b + lfd fr2,32(r1) + bl fpdisable + lwz r0,52(r1) + mtlr r0 + addi r1,r1,48 + blr + +/* + * Vector reciprocal estimate. We just compute 1.0/x. + * r3 -> destination, r4 -> source. + */ + .globl vrefp +vrefp: + stwu r1,-32(r1) + mflr r0 + stw r0,36(r1) + bl fpenable + lis r9,fpone@ha + li r0,4 + lfs fr1,fpone@l(r9) + mtctr r0 + li r6,0 +1: lfsx fr0,r4,r6 + fdivs fr0,fr1,fr0 + stfsx fr0,r3,r6 + addi r6,r6,4 + bdnz 1b + bl fpdisable + lwz r0,36(r1) + mtlr r0 + addi r1,r1,32 + blr + +/* + * Vector reciprocal square-root estimate, floating point. + * We use the frsqrte instruction for the initial estimate followed + * by 2 iterations of Newton-Raphson to get sufficient accuracy. + * r3 -> destination, r4 -> source. + */ + .globl vrsqrtefp +vrsqrtefp: + stwu r1,-48(r1) + mflr r0 + stw r0,52(r1) + bl fpenable + stfd fr2,32(r1) + stfd fr3,40(r1) + stfd fr4,48(r1) + stfd fr5,56(r1) + lis r9,fpone@ha + lis r8,fphalf@ha + li r0,4 + lfs fr4,fpone@l(r9) + lfs fr5,fphalf@l(r8) + mtctr r0 + li r6,0 +1: lfsx fr0,r4,r6 + frsqrte fr1,fr0 /* r = frsqrte(s) */ + fmuls fr3,fr1,fr0 /* r * s */ + fmuls fr2,fr1,fr5 /* r * 0.5 */ + fnmsubs fr3,fr1,fr3,fr4 /* 1 - s * r * r */ + fmadds fr1,fr2,fr3,fr1 /* r = r + 0.5 * r * (1 - s * r * r) */ + fmuls fr3,fr1,fr0 /* r * s */ + fmuls fr2,fr1,fr5 /* r * 0.5 */ + fnmsubs fr3,fr1,fr3,fr4 /* 1 - s * r * r */ + fmadds fr1,fr2,fr3,fr1 /* r = r + 0.5 * r * (1 - s * r * r) */ + stfsx fr1,r3,r6 + addi r6,r6,4 + bdnz 1b + lfd fr5,56(r1) + lfd fr4,48(r1) + lfd fr3,40(r1) + lfd fr2,32(r1) + bl fpdisable + lwz r0,36(r1) + mtlr r0 + addi r1,r1,32 + blr _